It is recommended that you review all proofs for parallelograms and their converses.

GHIJ is a parallelogram. Find the value of each of the following variables.

a.
$$\overline{GH} = 9x - 4$$
 and $\overline{II} = 5x + 12$
Opposite sides $\stackrel{\checkmark}{=}$
 $9x - 4 = 5x + 12$
 $4x - 4 = 12$
 $4x = 16$
 $x = 4$

b.
$$\angle HGJ = (11y + 68)^{\circ}$$
 and $\angle GHI = (13y + 4)^{\circ}$
 $||y + 68 + ||3y + 4| = |80|$
 $||y + 72| = |80|$

c.
$$\angle GJI = (3w + 10)^{\circ}$$
 and $\angle IHG = (9w - 98)^{\circ}$
 $OPP \cdot \angle S \cong$
 $Sw+IO = 9w-98$
 $IO = 6w-98$
 $IO = 6w-98$
 $IO = 6w-98$
 $IO = 6w-98$

d.
$$\overline{GK} = 3z + 2$$
 and $\overline{GI} = z + 34$
Diagonal bisect each other
 $2(\overline{GK}) = \overline{GI}$
 $6z + 4 = z + 34$
 $6z = z + 30$

9. Determine the value of each variable that would make the following a parallelogram. Explain which converse property would make it a parallelogram.

Converse Prop.

$$3y = 4(6) - 18$$

 $3y = 6$

$$(2x+26)^{\circ}$$
 $(y+37)^{\circ}$
 $(x-5)^{\circ}$
 $(2x+26+x-5=180)$
 $(3x+2)^{\circ}$
 $(3x+2)^{\circ}$
 $(3x+2)^{\circ}$
 $(3x+2)^{\circ}$

$$2 \times +26 + y +37 = 180$$

 $2(53) +26 + y +37 = 180$
 $4+169 = 180$

10. The following figure is a rectangle. Find the value of the given variable.

a.
$$\overline{XA} = 2x + 4$$
 and $\overline{WA} = 3x - 2$ Diagonals \cong in a rectangle $2x+4=3x-2$ $x-2$ $x-2$ $x-2$

0=2 -9

Converse prop.

If Diagonals

bisect each other

9= DX

4,50X

b.
$$\overline{XZ} = 6x - 5$$
 and $\overline{YW} = 2x + 19$ Diagonals \cong in a Rectargle $6x - 5 = 2x + 19$ $4x - 5 = 19$ $4x = 24$

c.
$$\overline{YA} = x + 3$$
 and $\overline{XZ} = 5x - 9$ Diagonals \cong m a Rectargle half diagonal $2(\overline{YA}) = \overline{XZ}$ $2(x+3) = 5x - 9$