Converse of

Parallelogram

Properties

Conditional Statement -

Converse -

1.
2.
3.
4.
5.

A Parallelogram is defined as a quadrilateral with both pairs of opposite sides parallel.
Does the given information make the QUADRILATERAL a PARALLELOGRAM?
If the information does not guarantee a parallelogram, sketch a counterexample that demonstrates another possible shape having the same characteristics.

7) Will this always form a parallelogram?
\square Yes \quad No (provide a counterexumple)

8) Will this always form a parallelogram?
\square Yes \quad No (provide a counterexample)

9) Will this always form a parallelogram?

10) Will this always form a parallelogram?
\square Yes $\quad \square \mathrm{No}$ (provide a counterexample)

11) Will this always form a parallelogram?

12) Will this always form a parallelogram? \square Yes $\quad \square \mathrm{No}$ (provide a counterexample)

13) Will this always form a parallelogram? \square Yes \square No (provide a counterexsumple)

14) Given: $Q U A D$ is a parallelogram

Prove: $\triangle Q D A \cong \triangle A U Q$

Converse Properties of Parallelograms

We can use the \qquad of each property to prove a quadrilateral is a of a quadrilateral are \qquad then it is a parallelogram. of a quadrilateral are \qquad , then it is a parallelogram. to both of its \qquad angles, then it is a parallelogram.

Ifof a quadrilateral bisect each other, then it is a parallelogram.

Draw a quadrilateral for each of the following situations then determine if it has to be a parallelogram.
a. Diagonals Bisect each other
b. Both pairs of opposite sides are congruent.
c. Only 1 pair of consecutive angles supplementary.

If you knew one pair of opposite sides of a quadrilateral was congruent and the other pair of opposite sides was parallel, would that be enough to prove it is a parallelogram?

Does the following shape have to be a parallelogram? Explain why.

A type of special \qquad is a \qquad

A \qquad is a quadrilateral with \qquad right \qquad .

THEOREM	HYPOTHESIS
If a quadrilateral is a rectangle, then it is a parallelogram. (rect. $\rightarrow \square)$	
If a parallelogram is a rectangle, then its diagonals are congruent. (rect. \rightarrow diags. \cong)	

Carpentry The rectangular gate has diagonal braces. Find each length.
1a. $H J$
1b. $H K$

1. In the diagram of rectangle ABCD , diagonals AC and BD intersect at E . If $\mathrm{AE}=3 x+y, \mathrm{BE}=4 x-2 y$ and $\mathrm{CE}=20$, find x and y.

2. In rectangle ABCD , diagonals AC and BD are drawn. If $\mathrm{AC}=x^{2}+4 x-23$ and $\mathrm{BD}=5 x+33$, find the length of AC.
3. In rectangle QRST , diagonals QS and RT intersect at E . If $\mathrm{QE}=3 x-10$ and $\mathrm{QS}=5 x-8$, find the length of QS.
4. In rectangle $A B C D$, diagonal $A C=6 x-2$ and diagonal $B D=4 x+2$. Find the length of $A C$.
5. Mr. Harmon is building a shelving unit for his bathroom. He wants the frame of the shelf to be a perfect rectangle. How could he verify this if he doesn't have a way to measure the angles?

Solve for x. Each figure is a rectangle.

1) $R E=21$
$C E=7 x+7$

2) $X S=15$

$$
S V=15 x
$$

3) $T V=22$
$M V=x+4$

4) $V X=16$ $N X=2 x-14$

5. What special feature does a rectangle have that other parallelograms do not have?
6. In square BOXY, diagonal $B X$ is 34 and diagonal $O Y$ is $4 x+10$. What is the value of x ?
7. In Rectangle HEAR, the diagonal HA and diagonal ER intersect at point T. If HA is $4 x+10, H T$ is $3 y-8$, and ET is $3 x+4$, what are the values of x and y ?

