Multiplication Rule \rightarrow multiple drawings

Used to find the probability of event A AND then event B occuring.
sgiven
$P(A$ and $B)=P(A) * P(B \mid A)$
Where $P \underline{(B \mid A)}$ equals $P(B)$ if A and B are independent.

Independent Events: Events that have no effect on each others outcomes.

Ex. 1 What is the probability of landing a coin on heads and getting an odd number when rolling a six sided die?

$$
\begin{array}{r}
P(\text { Heads and Odd })=P(\text { Heads }) \cdot P(\text { odd }) \\
\\
\frac{1}{2} \cdot \frac{3}{6}=\frac{3}{12}=\frac{1}{4}
\end{array}
$$

Ex. 2 A committee consists of four women and three men. The committee will randomly select two people to attend a conference in Hawaii. Find the probability that both are women

$$
\begin{aligned}
P(W \text { and } W)= & P(W) \cdot P(W \mid W) \\
& \frac{4}{7} \cdot \frac{3}{6}=\frac{2}{7}
\end{aligned}
$$

Ex. 3 What is the probability that a king will be drawn at random from a deck of cards, then after replacing it drawing a king again? $\frac{4}{52} \cdot \frac{4}{52}=\frac{1}{169}=0059$

Ex. 4 What is the probability of drawing a king, holding onto the card, then drawing another king?

$$
\frac{4}{52} \cdot \frac{3}{51}=\frac{1}{221}=0,00.45
$$

Conditional Probability

The probability of an event B happening GIVEN that event A already occurred.

$$
\begin{aligned}
& P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}
\end{aligned}
$$

If A and B are independent then $P(B \mid A)=P(B)$ and $P(A \mid B)=P(A)$.

Ex. 1 A jar contains black and white marbles. Two marbles are chosen without replacement. The probability of selecting a black marble and then a white marble is 0.34 , and the probability of selecting a black marble on the first draw is 0.47 . What is the probability of selecting a white marble on the second draw, given that the first marble drawn was(black? $P(B$ and $\omega)=0.34$

$$
P(B \mid A)=\frac{P(\text { And } B)}{P(A)}
$$

$$
\begin{aligned}
& P(B)=0.47 \\
& P(W \mid B)=\frac{0.34}{0.47}=0.723=72.3 \%
\end{aligned}
$$

$$
P(B \mid A)=\frac{P(\operatorname{Aon} B)}{P(A))}
$$

Ex. 2 The probability that it is Friday and that a student is absent is 0.03. Since there are 5 school days in a week, the probability that it is Friday is 0.2 . The probability that student is absent is 0.02 . What is the probability that a student is absent given that the day is Friday.

$$
\begin{array}{ll}
P(F \text { and } A)=0.03 & P(A \mid F)
\end{array}=\frac{P(F \text { and } A)}{P(F)}
$$

